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Abstract

Fluoxastrobin is one of the most widely used strobi fungicides, however, application of the fucigies may result in

soil residues leading to environmental damage diolyoxidative stress and damage to sentinel osgas{i.e.

earthworms). While this has been demonstratedtiiiical soil, the biochemical response Eifsenia fetida exposed to

fluoxastrobin in natural soils is unclear. Thisdstwtilized three typical natural soils (fluvo-aquioils, red clay, and

black soils) to evaluate the biochemical resporfidéi senia fetida exposed to fluoxastrobin (0.1, 1.0, 2.5 mg/kg)

including the production of reactive oxygen speciegpact on three enzyme activities, lipid peroxiola, and

8-hydroxydeoxyguanosine after a 4-week exposure.éeftects of fluoxastrobin ofisenia fetida in different soils were

assessed using an integrated biomarker responBg. (TBe findings may be possible to state thatale effects of

fluoxastrobin in artificial cannot exactly represémat in natural soils. Specifically, the fluoxadiin subchronic

toxicity was highest in red clay and lowest in lil@oil among the three natural soils. Furthermtire 8-OHdG content

was more sensitive to fluoxastrobin in all six eoaimental indicators of the present study.

Capsule: The toxicity of fluoxastrobin t&isenia fetida in natural soils were different from those in actél soil with

the toxicity order: Red clay > Fluvo-aquic soil faBk soil > Artificial soil.

Keywords: Strobilurin fungicide; Fluvo-aquic soil; Red claBtack soil; Integrated biomarker response (IBR)
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Introduction

Strobilurin fungicides, a new formulation followirigazole fungicides, are effective agents in coltitrg fungal

disease. The mechanism of action, (i.e. fluoxastrohnsfers electrons between cytochromes b ghth@ibits

respiratory via mitochondria (Zhang et al., 2018d)ich led to the wide use of strobilurin fungicsd® protect a

variety of crops from fungal disease. However, asegjuence of their use is the potential for stusisilfungicides to

accumulate in with the potential to exert toxicat@d impact on other nontarget receptors (Kohlscharid Ruf, 2016;

Wang et al., 2015). One such strobilurin fungid&luoxastrobin Fig. S1), a relative stable fungicide with a half-life

of 16-119 days (Zhang et al., 2019). However, Vigitg was found in the literature about the quastof fluoxastrobin

environmental toxicity.

Earthworms Eisenia fetida) were defined as the soil model animals by thea®imation for Economic

Cooperation and Development (OECD 222, 2004). Sieom acute toxicity studies have identified tHabkastrobin

exhibits low toxicity toEisenia fetida (14 d LDy, >1,000 mg/kg). Although high Ldg values have been reported, lower

dose (0.1, 1.0, 2.5 mg/kg) exposure of fluoxastrabEisenia fetida for 28 days in artificial soils (Zhang et al., Bof)

may lead to the induction of oxidative stress aachage.

Klara and Jakub (2012) identified that differenzeBOP bioavailability and bioaccumulation may enghen

artificial and natural soils are utilized Hisenia fetida toxicity tests. A similar result was observed bgsl et al. (2011)

when molybdenum bioaccumulationkisenia Andrei was assessed in diverse natural soils. This rigeguestion as

to whether the biochemical responsé=isknia fetida exposed to fluoxastrobin in artificial soil is regentative of

effects that may be observed in natural soils.

Three typical natural soils (fluvo-aquic soils, @dy, and black soils) were chosen to evaluatdibehemical

response oEisenia fetida exposed to fluoxastrobin at low dose (0.1, 1.0,i@gdkg) over 28 days using endpoints

including production of reactive oxygen species §Ompact on activities of superoxide dismutase} catalase

(CAT), and glutathione S-transferase (GST), lipgdgxidation (LPO), and 8-hydroxydeoxyguanosine (8dG).

Integrated Biomarker Response (IBR, v2) was comsiti®o evaluate the ecological and environmentatlitions
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(Samanta et al., 2018; Sanchez-Hernandez, 20193 Ataal., 2011). To clearly compare the fluoxastrdabxicity to

Eisenia fetida in different soil types, the ROS contents, LPO, andyme activity of 2.5 mg/kg after a 4-week expesu

were selected to calculate the IBR index. The tesifleach indicator in artificial soil were as jpa&r previous study

(Zhang et al., 2018d). The current study aims terdaine whether the biochemical effect&tdenia fetida exposed to

fluoxastrobin in artificial soils are representatinf those in natural soils.

Materials and methods

Chemicals

Fluoxastrobin (CAS 361377-29-9; 99.3% purity) wasghased from Dr. Ehrenstorfer GmbH (Augsburg, Geryi,

while acetonitrile (chromatographical purity) wagghased from Tedia Co. Inc. (Ohio, USA). The otttemicals of

analytical purity are listed ifiable S1. 8-OHdG was evaluated using the Earthworm 8-OHUGSE kit

(hengyuan biological technology Co. Ltd., Shang@diina).

Soil, Eisenia fetida, exposure concentration and time

The fluvo-aquic soils, red clay, and black soilgaveollected from Dezhou (Shandong Province, 3®8N7816.54°E),

Nanning (Guangxi Province, 22.74°N, 109.31°E) ahdr@chun (Jilin Province, 43.80°N, 125.40°E), resigely.

Soils were sieved to < 2-mm prior to exposure ssidiable S2 details the physical-chemical properties of thé $es

(Zhang et al., 2018a).

Toxicity tests used 1 L beakers containing 500rg (eeight) of test soil. The moisture content wepiated to

60% water-holding capacity. Perforated plastic wras used to seal each beaker to maintain moiahdeas

exchange. A 28-day toxicology test (7, 14, 21, 28dl) was performed with the final doses of fluds@sin in test

soils (1 L beakers) of 0, 0.1, 1.0, and 2.5 mg/ikgsiil as per Zhang et al. (2018d).

Eisenia fetida were chosen as sentinel soil organisms for expostudies with fluoxastrobittisenia fetida were

purchased from a supplier (Rizhao, China) and oedtfior 2 weeks (Zhang et al., 2018d). HeaHisenia fetida
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(weight ranging from 0.3 to 0.5 g) with visibletellum were chosen at random for sensitivity angchuonic toxicity

tests.

The principle of using animals in toxicologicaltes/as adopted in the present study (Zhang €2@18c). Each

control and treatment contained 20 earthworms. Ttienincubator (RXZ-500B-LED, Ningbo Jiangnan tastent

Factory, China) was used to culture each beak2® at1 ] for 1/1 of light/dark till 28 days. Each toxicolicgl

exposure trial contained three replicates.

Furthermore, it was considered that the earthwamnsisivity test would usefully testify the reliaityl of

subchronic toxicity test. The details of the savigjt test were shown iSupporting Information.

Assessment of ROS contents

ROS content was measured using the DCFH-DA methbdr(g et al., 2018d), using a reactive oxygen sgeg$say

kit purchased from Beyotime Biotech. Inc. (Shangina). Earthworms from control and exposuretineats (n=3)

were selected for ROS content determination rang@méach sample time point. A fluorescence spphtstometer

(RF-5301PC, Shimadzu, Japan) was used to quanify eontent.

Assessment of protein contents, enzyme activities, and malonaldehyde (MDA) content

At each sample time point, earthworm from contral &reatments (n=3) was selected at random forreezaxtraction

(zhang et al., 2018d). Prepared enzymes were asebd determination of protein content, enzymévigt and MDA

content.

Protein contents were measured using the methBdaafford (1976) with concentrations quantified gsin

ultraviolet-visible spectrophotometer (UV-2600, ®hdzu, Japan) was used.

Enzyme activity was determined as per Zhang €2818d). The UV-2600 was used to quantify actigitid SOD,

CAT, and GST. The units of SOD, CAT, and GST wefmtpr (U: enzyme levels inhibited 50% NBT photatieal),

U/mg pr (U: enzyme levels inhibited 50%®4), and nmol/min/mg pr, respectively.
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Box and Maccubbin (1997) consider that MDA conisra suitable biomarker of LPO. MDA content wa®als

assessed using the thiobarbituric acid method @ktal., 2018d) expressed as nmol/mg pr.

DNA damage assessment

Guo et al (2014). consider that 8-OHdG contentdsitable biomarker of DNA damage, which was deieech using

an Earthworm 8-OHdG ELISA kit following the manufacer’s instructions. Earthworms from control ang@sure

treatments (n=3) were chosen for DNA damage detextioin at random at each sample time point. TheSBLI

(Multiskan MK3, Thermo Fisher Scientific, Massaceits, USA) was used to quantify 8-OHdG.

Satistics

The box plot was drawn using Origin 2019 (Originl@brporation, Massachusetts, USA). Each toxicomligixposure

trial contained three replicates. The five linemirtop to bottom represent the maximum, meansridatd error (SE),

median, means — SE, and minimum. The small chetieitbox plot represents mean values. Statistaek&ye for

Social Sciences (3¢, SPSS Inc., USA) was used to conduct a one-waysiaa®f variance (ANOVA) between control

and exposure treatments. Specifically, the legsiifstant difference test was adopted with the iggince ofp < 0.05.

Results of indicators dfisenia fetida exposed to fluoxastrobin at 0.1, 1.0, and 2.5 ggtk day 28 were

calculated for IBR index using the EXCEL softwakéigrosoft, Redmond, WA, USA). The calculation détaiere

listed in the section “1.3 Calculation of integhtsomarker response (IBR) index” of th8upporting Information”.

Results and discussion

ROS contents

ROS content in organisms exists in a dynamic baladowever, once ROS is unable to be cleaned bgxdant

enzymes, the balance is impacted (Brendler-Schwhab, 2005). 2’,7'-dichlorofluorescein (DCF), theaction

product of ROS and DCFH-DA, can be used to evalR&@& content due to its fluorescence activity (Zhanal.,
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2018d).Figure 1 illustrates ROS content Hasenia fetida exposed to fluoxastrobin in three natural soilhete low

dose exposure concentrations.

<Fig. 1>

On days 7 and 14, the ROS contents at diverse asposncentrations were all notably greater thasdhin

control in all three diverse natural soils. Theutessshowed a dose-response relationship. Howaeeanptable

discrepancy was found between 1.0 and 2.5 mg/lagntrents in red clay and between 0.1 and 1.0 mg/kdgick soils.

On day 21, the ROS contents at diverse exposureeotrations were all notably greater than thosmirtrol in all

three diverse natural soils. The results showedraficant dose-response relationship. Howevemoitable

discrepancy was found between 1.0 and 2.5 mg/legnents in red clay. On day 28, the ROS conterds/atse

exposure concentrations were all notably greatar those in control in all three diverse naturélsad he results

showed a significant dose-response relationshipndable discrepancy was found between 0.1 andhij/Rg

treatments in fluvo-aquic soils.

Previously we studied the subchronic effect (at 0.Q, 2.5 mg/kg) of fluoxastrobin dfisenia fetida in artificial

soil (a mixture of kaolin, quartz sand, and pegte@sOECD) (OECD 222, 2004, OECD 207, 1984, Zhdraj.2018d).

Similar results were obtained (i.e. values grethiten unexposeHisenia fetida and dose-response), however ROS

content in artificial soil (813.8-1103 fluo-intetgimg Pr) was lower compared to values determinguhtural soils.

Our previous study (Zhang et al., 2017) stated R&Scause oxidative damage including LPO and DNAaize,

which were also evaluated in the present study.

Activities of the antioxidant enzyme (SOD and CAT)

The activities of enzymes can be adopted to evalelatironmental pollution (Song et al., 2009; Zhehgl., 2014).

ROS can be inactivated by antioxidant enzymes (8@IiDCAT) (Guo et al., 2016; Hu et al., 2016; Nehlet2006),

which are the first line of defense for cellulaotarction (Liu et al., 2018; Yan et al., 2015). S@Desponsible for the
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dismutation of @ to H,O,, which is detoxified by CAT (Zhang et al., 2018bBigures 2, 3 illustrate SOD and CAT

activities inEisenia fetida exposed to fluoxastrobin in three natural soilspestively.

<Figs. 2, 3>

On day 7, SOD activities following exposure to ftastrobin at all concentrations were notably loti&am those

measured in control soils with the exception of thahe black soil at the lowest exposure dose (0g/kg). No

notable discrepancy was observed between 1.0 &nud@kg treatments in all three natural soils. @y 14, the SOD

activities showed a notable decline from the cdnitr@xposure groups in all three diverse natuvds £xcept for those

in 0.1 mg/kg treatments of black soils. No notatiferepancy was found between 0.1 and 1.0 mg/lagntrents and

between 1.0 and 2.5 mg/kg in all three diverserahtioils. On day 21, the SOD activities showedtalple decline

from the control to exposure groups except foréhod.1 mg/kg treatments in all three diverse ratspils. No

notable discrepancy was found between 0.1 and @/Rgireatments in red clay. On day 28, the SOWvities showed

a notable decline from the control to exposure gsoat the doses of 1.0 and 2.5 mg/kg in fluvo-agaitand red clay.

No notable discrepancy was found between 0.1 ahdhii/kg treatments in red clay, between 1.0 andrigfg in all

three diverse natural soils, and among 0.1, 1.8 2a%h mg/kg treatments in black soils. The simfilading in each

exposure time was observed by Han et al. (2016nwuliney studied the effects of another strobiluyipet fungicide on

zebrafish at (1, 10, and 1Q@/L). We also studied the subchronic of fluoxasinain Eisenia fetida in artificial soil

(Zhang et al., 2018d), while the SOD activitie®kposure groups were all notably greater than thosentrol at

diverse exposure time.

On day 7, the CAT activities showed a notable deciiom the control to exposure groups at the @dseng/kg

in red and black soils, while those in fluvo-agsidls were greater than in control. No notable misancy was found

between 0.1 and 1.0 mg/kg treatments in fluvo-aqails and red clay. On day 14, the CAT activiskswed a notable

decline from the control to exposure groups inakad, while those in fluvo-aquic soils were notaghgater than in

control. No notable discrepancy was found amongip®sure groups and the controls in black soild@n?21, the
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CAT activities showed a notable decline from thatoal to exposure groups in red and black soils]enhose in

fluvo-aquic soils showed a significant dose-respazisnb. On day 28, the CAT activities showed aabt# decline

from the control to exposure groups in red andkals, while those in fluvo-aquic soils were gegahan in control.

The results showed a significant dose-responstgarhip in red clay. No notable discrepancy wamtbbetween 0.1

and 1.0 mg/kg treatments in fluvo-aquic soils amsag 0.1, 1.0, and 2.5 mg/kg treatments in bladk.sdnother

important finding was that the CAT activities shagenotable decline from the control to exposurrigs in artificial

soil (Zhang et al., 2018d), which was similar te thsults in red and black soils, differed fromséadn fluvo-aquic soils.

The difference among the results of SOD and CAivisiess in artificial and natural soils may stateettoxicity of

fluoxastrobin in different soils was different. Shinay be due to the different soil types, includity TOC, and so on.

GST activity

As Zhu et al. (2011) stated, GST (detoxifying engymwan catalyze the nucleophilic coupling of some&ogenous or

exotic harmful substances with the mercaptol dipdlthe modified glutathione, and increase its bypthobicity so that

it can easily cross the cell membrane and exgdtet being decomposed, so as to achieve the paigfatetoxification.

Figure4 illustrated GST activities i&isenia fetida exposed to fluoxastrobin in three natural soill®atexposure

concentrations.

<Fig. 4>

On day 7, the GST activities at diverse exposureentrations remain stable in control in fluvo-aand black

soils except for those of 0.1 mg/kg treatmentdund-aquic soils and 1.0 mg/kg in black soils, whihose in red clay

were notably greater than in control. No notabgeipancy was found between 1.0 and 2.5 mg/kgexds in all

three diverse natural soils. On day 14, the GSiVities at diverse exposure concentrations remiaibls in control in

fluvo-aquic and red clay except for those of 2.5kgdreatments in fluvo-aquic soils and 1.0 mg#kged clay, while

those in black soils were notably greater tharoimttol. No notable discrepancy was found among,,and 2.5

mg/kg treatments in black soils. On day 21, the @&fivities at diverse exposure concentrations \aéneotably
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greater than those in control in fluvo-aquic aracklsoils except for those of 2.5 mg/kg treatmé@ntdack soils, while

those in red clay were notably lower than in cdniilm notable discrepancy was found between 0.11abang/kg

treatments in fluvo-aquic and black soils and betw®.0 and 2.5 mg/kg in red clay. On day 28, th& &Sivities

showed a climb from the control to exposure grdnghivo-aquic and black soils except for thos€ &f mg/kg

treatments in black soils. No notable discrepanay feund among 0.1, 1.0, and 2.5 mg/kg treatmarftavo-aquic

soils, and between 0.1 and 1.0 mg/kg treatmentsdrclay. The results in black soils showed reaghawximum in

1.0 mg/kg treatments (145.9 nmol/min/mg pr) anchttesluced. No notable regularity was found in G8&fiviies in

all three diverse natural soils, which may be duthé complex process of the stimulation of ROS @detdxifying

effects. The aforementioned results showed that &SiVities may increase due to stimulation of R&d8 LPO (Dong

et al., 2009). The values of GST activities infeniil soil were higher compared to those in cohtrat including 0.1

mg/kg on days 21 and 28 (Zhang et al., 2018d).aBligne S-transferase activities reached a maximutyD mg/kg

treatments and then reduced at each exposureTimse results were similar to those in black sdilsach exposure

time except for those on day 7.

MDA contents

Box and Maccubbin (1997) believed ROS can cause, Mizh was evaluated using MDA contents as thenbider.

Figure5illustrated MDA contents ifisenia fetida exposed to fluoxastrobin in three natural soils.

<Fig. 5>

On day 7, the MDA contents at diverse exposure @atnations were all notably greater than thoseoitrol in

red clay and black soils. Furthermore, no notaiderdpancy was found among 0.1, 1.0, and 2.5 nigdegments and

the controls in fluvo-aquic soils and between hd 4.0 mg/kg in black soils. On day 14, the MDA s at diverse

exposure concentrations were all notably greater those in control in all three diverse naturéssexcept for those

in 0.1 mg/kg treatments of fluvo-aquic and blacikss®n day 21, the MDA contents at diverse expesamcentrations

10
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were all greater than those in control in all thdeesrse natural soils except for those in 0.1 mgrkatments of red

clay, and in 0.1 and 1.0 mg/kg treatments of bkils. On day 28, the MDA contents at diverse eypds

concentrations were all notably greater than thosentrol in all three diverse natural soils excip those in 1.0 and

2.5 mg/kg treatments of fluvo-aquic soils and it fg/kg treatments of black soils. No notable dipancy was found

between 0.1, and 2.5 mg/kg treatments in both flaguic and red clay.

The excess ROS could induce LPO, and both of thatants and LPO could induce DNA damage and prbduc

excess ROS (Evert et al., 2004, Zhang et al., 201&)studied the fluoxastrobin’ subchronic toxicityRisenia fetida

in artificial soil (Zhang et al., 2018d). The nd@increase was only found in 1.0 mg/kg treatmentslay 7. The MDA

contents were notably higher than those in comtxokpt for those in 0.1 mg/kg on day 14, which siaglar to the

results in fluvo-aquic and black soils. The resintartificial soils reached a maximum of 1.0 mgtkeatments and then

reduced on day 21, which was different from thosthé present study. Notable increases were faudddiand 2.5

mg/kg treatments on day 28. These results may ttatdluoxastrobin toxicity t&isenia fetida in artificial soil was

different from that in natural soils.

DNA damage (8-OHdG contents)

Previous studies (Box and Maccubbin, 1997; Woaal.ef1990) indicated that ROS can cause DNA-protein

crosslinking and damage DNA strands including bsesatd space structure changes. Deoxyguanosin@NAe

nucleoside component, can be altered to 8-OHdG;wikiconsidered a biomarker to evaluate oxidatixess and

DNA damage (Guo et al., 2014)igure 6 illustrates the 8-OHdG content fitisenia fetida exposed to fluoxastrobin in

the three natural soils.

<Fig. 6>

On days 7 and 14, the 8-OHdG contents at divergesexe concentrations were all notably greater thase in

control in all three diverse natural soils exceptthose in 0.1 mg/kg treatments in all three diearatural soils. No

11
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notable discrepancy was found between 1.0 and g/kgireatments in black soil on day 7 and in fhaguic and red

clay on day 14. On days 21 and 28, the 8-OHdG ot diverse exposure concentrations were adlipgreater

than those in control in all three diverse natsmils except for those in 0.1 mg/kg treatmentdwifd-aquic soils on

day 21 and in black soils on day 28. No notablerdjsancy was found between 0.1 and 1.0 mg/kg tesaBin both

fluvo-aquic and black soils and between 1.0 andyikg in red clay on day 28.

The excess ROS could induce the production of 8-@Kithang et al., 2014). The formation of 8-OHdGidatkd

that there was oxidative and DNA damage followirgasure to fluoxastrobin igisenia fetida (Aguirre-Martinez et al.,

2013). Another thing stands out in the presentysisithat in all six environmental indicators oétpresent study,

8-OHdG content was more sensitive to fluoxastrobin.

Differential toxicity among artificial soil and threetest natural soils

Integrated Biomarker Response (IBR) was considéreadnethod to evaluate the ecological and envirarnahe

conditions (Samanta et al., 2018, Wang et al., P0lie ROS content, MDA content, and SOD, CAT, GSfivity of

2.5 mg/kg after 4-week exposure were selectedltwulede the IBR indexRigure 7). The values of the fluoxastrobin

toxicity to Eisenia fetida in artificial soil were as per our previous stydyang et al., 2018d).

<Fig. 7>

In Figure 7A, the IBR values which stand for the fluoxastroluxi¢ity were 3.20, 6.35, 6.58, and 4.03 in

artificial soil, fluvo-aquic soil, red clay, andauk soil, respectively. The higher the IBR valiee, higher the

fluoxastrobin toxicity. Thus, the fluoxastrobin stiponic toxicity toEisenia fetida showed a climb form the artificial

soil to the natural soils. The subchronic toxiaitgs highest in red clay and lowest in black soibagithe three natural

soils.

In Figure 7B, the crossover points of the orange (red, greethpare) circle, and the coordinate axis were the en

point of each indicator. The length between thginal point and end point in the star plot représéme standardized
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299

300
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302

303

value of each index. The black circle was a basdliero). The values greater than zero means todisamulate,

lower than zero means indicator inhibit. The resesmof biomarkers indicated the increase of GSViggtROS and

MDA contents in all the artificial and natural soéxcept for the decrease of GST activity in blsmk The toxic

effects were the decrease of SOD and CAT activitgilithe artificial and natural soils except fbetincrease of CAT

activity in fluvo-aquic soil and the increase of B@ctivity in artificial soil. Besides, the ROS ¢ents in red clay were

similar to those in black soil, the GST activitiasartificial soils were similar to those in flunauic soils, and the

MDA contents in artificial soils were similar todse in red clay.

As the IBR results stated that the subchronic teffiects of fluoxastrobin t&isenia fetida in natural soils were

different from those in artificial soil. Specifidglthe fluoxastrobin subchronic toxicity was highén red clay and

lowest in black soil among the three natural sdilaus, we considered the toxicology test of fludsatsin in artificial

soils could not exactly evaluate that in a realimment. The previous study argued that the toxiaf three test

pesticides in the field was higher than that inl#i®ratory (Schnug et al., 2014).

Furthermore, the toxic manifestation of fluoxastroéxisted differences in three test natural sdités important

finding stated that the terrestrial toxicity of ttest pollutant may be affected by physicochencaperties (Amorim et

al., 2005, Stepnowski et al., 2007).

Taken together, we evaluated the biochemical resgmafEisenia fetida exposed to fluoxastrobin in natural soils

with outcomes significantly different from toxicitybservation in artificial soils. Though, fluoxastin also induced

oxidative and DNA damage Hisenia fetida in natural soils at different levels, as the IBRults stated that the

fluoxastrobin subchronic toxicity was highest id iday and lowest in artificial soils. Here comeegtions? Which one

or more physicochemical properties of natural saffsct the toxicity of fluoxastrobin? What is tteicity of

fluoxastrobin to soil organisms in the other natsmls? Are the regularities similar to other pedes or even other

environmental pollutants? All these questions maibitrated in future studies.
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401 Fig. 1. The ROS content ikisenia fetida exposed to fluoxastrobin in fluvo-aquic soils, iy, and black soils at
402  diverse concentrations. The small check in thefokrepresents mean values of three replicates fivh lines from
403  top to bottom represent the maximum, means + stdrefeor (SE), median, means — SE, and minimum |ISetter
404  represents significant differenge<€ 0.05) among 0 mg/kg and other exposure groupgrBiein.
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410 Fig. 2. SOD activities irEisenia fetida exposed to fluoxastrobin in fluvo-aquic soils, cdaly, and black soils at diverse

411  concentrations. The small check in the box plotespnts mean values of three replicates. Theifies from top to

412  bottom represent the maximum, means + standard @&), median, means — SE, and minimum. Smaéett

413  represents significant differenge<€ 0.05) among 0 mg/kg and other exposure groupgrBiein.
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419  Fig. 3. CAT activities inEisenia fetida exposed to fluoxastrobin in fluvo-aquic soils, rtay, and black soils at diverse
420  concentrations. The small check in the box plotespnts mean values of three replicates. Theifies from top to
421  bottom represent the maximum, means + standard &), median, means — SE, and minimum. Smadrett
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Highlights

Effects of fluoxastrobin on earthwormsin different types of soils were compared.
Subchronic toxicity of fluoxastrobin to Eisenia fetida was systematically eval uated.

Toxicity in natural soils may not represent that in artificial soil evaluated by IBR.
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