Journal Pre-proof

Applying fungicide on earthworms: Biochemical effects of *Eisenia fetida* exposed to fluoxastrobin in three natural soils

Cheng Zhang, Tongtong Zhou, Zhongkun Du, Albert Juhasz, Lusheng Zhu, Jun Wang, Jinhua Wang, Bing Li

PII: S0269-7491(19)34926-7

DOI: https://doi.org/10.1016/j.envpol.2019.113666

Reference: ENPO 113666

To appear in: Environmental Pollution

Received Date: 16 September 2019

Revised Date: 31 October 2019

Accepted Date: 21 November 2019

Please cite this article as: Zhang, C., Zhou, T., Du, Z., Juhasz, A., Zhu, L., Wang, J., Wang, J., Li, B., Applying fungicide on earthworms: Biochemical effects of *Eisenia fetida* exposed to fluoxastrobin in three natural soils, *Environmental Pollution* (2019), doi: https://doi.org/10.1016/j.envpol.2019.113666.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

Journal Pre-proof

Journal Prevention

1 Applying fungicide on earthworms: Biochemical effects of *Eisenia fetida* exposed to fluoxastrobin in three

2 natural soils

3 Cheng Zhang^a, Tongtong Zhou^a, Zhongkun Du^a, Albert Juhasz^b, Lusheng Zhu^{a,*}, Jun Wang^a, Jinhua Wang^a, Bing Li^a

- 5 ^a College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural
- 6 Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and
- 7 Fertilizer Resources, Taian, 271018, PR China
- 8 ^bFuture Industries Institute, Centre for Environmental Risk Assessment and Remediation, University of South Australia,
- 9 Mawson Lakes, SA 5095, Australia
- 10
- 11 Email: Cheng Zhang: zxjzhangcheng@163.com
- 12 Tongtong Zhou: TTZhou425@163.com
- 13 Zhongkun Du: dzk77@163.com
- 14 Albert Juhasz: Albert.Juhasz@unisa.edu.au
- 15 Jun Wang: jwang@sdau.edu.cn
- 16 Jinhua Wang: wjh@sdau.edu.cn
- 17 Bing Li: libing201709@163.com
- 18 *Corresponding Author: Lusheng Zhu* (ORCID: 0000-0001-6212-1965)
- 19 College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
- 20 Phone: +86 538 8249789.
- 21 Fax: +86 538 8242549.
- 22 E-mail: lushzhu@sdau.edu.cn

23 Abstract

Journal Pre-proof

24	Fluoxastrobin is one of the most widely used strobilurin fungicides, however, application of the fungicides may result in
25	soil residues leading to environmental damage including oxidative stress and damage to sentinel organisms (i.e.
26	earthworms). While this has been demonstrated in artificial soil, the biochemical response of Eisenia fetida exposed to
27	fluoxastrobin in natural soils is unclear. This study utilized three typical natural soils (fluvo-aquic soils, red clay, and
28	black soils) to evaluate the biochemical response of Eisenia fetida exposed to fluoxastrobin (0.1, 1.0, 2.5 mg/kg)
29	including the production of reactive oxygen species, impact on three enzyme activities, lipid peroxidation, and
30	8-hydroxydeoxyguanosine after a 4-week exposure. The effects of fluoxastrobin on Eisenia fetida in different soils were
31	assessed using an integrated biomarker response (IBR). The findings may be possible to state that the toxic effects of
32	fluoxastrobin in artificial cannot exactly represent that in natural soils. Specifically, the fluoxastrobin subchronic
33	toxicity was highest in red clay and lowest in black soil among the three natural soils. Furthermore, the 8-OHdG content
34	was more sensitive to fluoxastrobin in all six environmental indicators of the present study.
35	
36	Capsule: The toxicity of fluoxastrobin to Eisenia fetida in natural soils were different from those in artificial soil with
37	the toxicity order: Red clay > Fluvo-aquic soil > Black soil > Artificial soil.
38	
39	Keywords: Strobilurin fungicide; Fluvo-aquic soil; Red clay; Black soil; Integrated biomarker response (IBR)

41 Introduction

Journal Pre-proof

42	Strobilurin fungicides, a new formulation following triazole fungicides, are effective agents in controlling fungal
43	disease. The mechanism of action, (i.e. fluoxastrobin transfers electrons between cytochromes b and C ₁) inhibits
44	respiratory via mitochondria (Zhang et al., 2018d), which led to the wide use of strobilurin fungicides to protect a
45	variety of crops from fungal disease. However, a consequence of their use is the potential for strobilurin fungicides to
46	accumulate in with the potential to exert toxicological impact on other nontarget receptors (Kohlschmid and Ruf, 2016;
47	Wang et al., 2015). One such strobilurin fungicide is fluoxastrobin (Fig. S1), a relative stable fungicide with a half-life
48	of 16-119 days (Zhang et al., 2019). However, very little was found in the literature about the question of fluoxastrobin
49	environmental toxicity.
50	Earthworms (Eisenia fetida) were defined as the soil model animals by the Organization for Economic
51	Cooperation and Development (OECD 222, 2004). Short-term acute toxicity studies have identified that fluoxastrobin
52	exhibits low toxicity to <i>Eisenia fetida</i> (14 d $LD_{50} > 1,000 \text{ mg/kg}$). Although high LD_{50} values have been reported, lower
53	dose (0.1, 1.0, 2.5 mg/kg) exposure of fluoxastrobin to Eisenia fetida for 28 days in artificial soils (Zhang et al., 2018d)
54	may lead to the induction of oxidative stress and damage.
55	Klára and Jakub (2012) identified that differences in POP bioavailability and bioaccumulation may arise when
56	artificial and natural soils are utilized in <i>Eisenia fetida</i> toxicity tests. A similar result was observed by Gestel et al. (2011)
57	when molybdenum bioaccumulation in Eisenia Andrei was assessed in diverse natural soils. This raises the question as
58	to whether the biochemical response of Eisenia fetida exposed to fluoxastrobin in artificial soil is representative of
59	effects that may be observed in natural soils.
60	Three typical natural soils (fluvo-aquic soils, red clay, and black soils) were chosen to evaluate the biochemical
61	response of Eisenia fetida exposed to fluoxastrobin at low dose (0.1, 1.0, 2.5 mg/kg) over 28 days using endpoints
62	including production of reactive oxygen species (ROS), impact on activities of superoxide dismutase (SOD), catalase
63	(CAT), and glutathione S-transferase (GST), lipid peroxidation (LPO), and 8-hydroxydeoxyguanosine (8-OHdG).
64	Integrated Biomarker Response (IBR, v2) was considered to evaluate the ecological and environmental conditions

65	(Samanta et al., 2018; Sanchez-Hernandez, 2019; Wang et al., 2011). To clearly compare the fluoxastrobin toxicity to
66	<i>Eisenia fetida</i> in different soil types, the ROS contents, LPO, and enzyme activity of 2.5 mg/kg after a 4-week exposure
67	were selected to calculate the IBR index. The results of each indicator in artificial soil were as per our previous study
68	(Zhang et al., 2018d). The current study aims to determine whether the biochemical effects of Eisenia fetida exposed to
69	fluoxastrobin in artificial soils are representative of those in natural soils.
70	
71	Materials and methods
72	Chemicals
73	Fluoxastrobin (CAS 361377-29-9; 99.3% purity) was purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany),
74	while acetonitrile (chromatographical purity) was purchased from Tedia Co. Inc. (Ohio, USA). The other chemicals of
75	analytical purity are listed in Table S1. 8-OHdG was evaluated using the Earthworm 8-OHdG ELISA kit
76	(hengyuan biological technology Co. Ltd., Shanghai, China).
77	
78	Soil, Eisenia fetida, exposure concentration and time
79	The fluvo-aquic soils, red clay, and black soils were collected from Dezhou (Shandong Province, 36.78°N, 116.54°E),
80	Nanning (Guangxi Province, 22.74°N, 109.31°E) and Changchun (Jilin Province, 43.80°N, 125.40°E), respectively.
81	Soils were sieved to < 2-mm prior to exposure studies. Table S2 details the physical-chemical properties of the test soils
82	(Zhang et al., 2018a).
83	Toxicity tests used 1 L beakers containing 500 g (dry weight) of test soil. The moisture content was adjusted to
84	60% water-holding capacity. Perforated plastic wrap was used to seal each beaker to maintain moisture and gas
85	exchange. A 28-day toxicology test (7, 14, 21, and 28 d) was performed with the final doses of fluoxastrobin in test
86	soils (1 L beakers) of 0, 0.1, 1.0, and 2.5 mg/kg dry soil as per Zhang et al. (2018d).
87	Eisenia fetida were chosen as sentinel soil organisms for exposure studies with fluoxastrobin. Eisenia fetida were

88 purchased from a supplier (Rizhao, China) and cultured for 2 weeks (Zhang et al., 2018d). Healthy *Eisenia fetida*

89	(weight ranging from 0.3 to 0.5 g) with visible clitellum were chosen at random for sensitivity and subchronic toxicity
90	tests.
91	The principle of using animals in toxicological tests was adopted in the present study (Zhang et al., 2018c). Each
92	control and treatment contained 20 earthworms. Then, the incubator (RXZ-500B-LED, Ningbo Jiangnan Instrument
93	Factory, China) was used to culture each beaker at 20 ± 1 for 1/1 of light/dark till 28 days. Each toxicological
94	exposure trial contained three replicates.
95	Furthermore, it was considered that the earthworm sensitivity test would usefully testify the reliability of
96	subchronic toxicity test. The details of the sensitivity test were shown in Supporting Information.
97	
98	Assessment of ROS contents
99	ROS content was measured using the DCFH-DA method (Zhang et al., 2018d), using a reactive oxygen species assay
100	kit purchased from Beyotime Biotech. Inc. (Shanghai, China). Earthworms from control and exposure treatments (n=3)
101	were selected for ROS content determination randomly at each sample time point. A fluorescence spectrophotometer
102	(RF-5301PC, Shimadzu, Japan) was used to quantify ROS content.
103	
104	Assessment of protein contents, enzyme activities, and malonaldehyde (MDA) content
105	At each sample time point, earthworm from control and treatments (n=3) was selected at random for enzyme extraction
106	(Zhang et al., 2018d). Prepared enzymes were used for the determination of protein content, enzyme activity, and MDA
107	content.
108	Protein contents were measured using the method of Bradford (1976) with concentrations quantified using
109	ultraviolet-visible spectrophotometer (UV-2600, Shimadzu, Japan) was used.
110	Enzyme activity was determined as per Zhang et al. (2018d). The UV-2600 was used to quantify activities of SOD,
111	CAT, and GST. The units of SOD, CAT, and GST were U/mg pr (U: enzyme levels inhibited 50% NBT photochemical),
112	U/mg pr (U: enzyme levels inhibited 50% H_2O_2), and nmol/min/mg pr, respectively.

113	Box and Maccubbin (1997) consider that MDA content is a suitable biomarker of LPO. MDA content was also
114	assessed using the thiobarbituric acid method (Zhang et al., 2018d) expressed as nmol/mg pr.
115	
116	DNA damage assessment
117	Guo et al (2014). consider that 8-OHdG content is a suitable biomarker of DNA damage, which was determined using
118	an Earthworm 8-OHdG ELISA kit following the manufacturer's instructions. Earthworms from control and exposure
119	treatments (n=3) were chosen for DNA damage determination at random at each sample time point. The ELISA
120	(Multiskan MK3, Thermo Fisher Scientific, Massachusetts, USA) was used to quantify 8-OHdG.
121	
122	Statistics
123	The box plot was drawn using Origin 2019 (OriginLab Corporation, Massachusetts, USA). Each toxicological exposure
124	trial contained three replicates. The five lines from top to bottom represent the maximum, means + standard error (SE),
125	median, means - SE, and minimum. The small check in the box plot represents mean values. Statistical Package for
126	Social Sciences (V _{22.0} , SPSS Inc., USA) was used to conduct a one-way analysis of variance (ANOVA) between control
127	and exposure treatments. Specifically, the least significant difference test was adopted with the significance of $p < 0.05$.
128	Results of indicators of <i>Eisenia fetida</i> exposed to fluoxastrobin at 0.1, 1.0, and 2.5 mg/kg on day 28 were
129	calculated for IBR index using the EXCEL software (Microsoft, Redmond, WA, USA). The calculation details were
130	listed in the section "1.3 Calculation of integrated biomarker response (IBR) index" of the "Supporting Information".
131	
132	Results and discussion
133	ROS contents
134	ROS content in organisms exists in a dynamic balance. However, once ROS is unable to be cleaned by antioxidant
135	enzymes, the balance is impacted (Brendler-Schwaab et al., 2005). 2',7'-dichlorofluorescein (DCF), the reaction
136	product of ROS and DCFH-DA, can be used to evaluate ROS content due to its fluorescence activity (Zhang et al.,

138 dose exposure concentrations. 139 <Fig. 1> 140 141 On days 7 and 14, the ROS contents at diverse exposure concentrations were all notably greater than those in 142 control in all three diverse natural soils. The results showed a dose-response relationship. However, no notable 143 discrepancy was found between 1.0 and 2.5 mg/kg treatments in red clay and between 0.1 and 1.0 mg/kg in black soils. 144 On day 21, the ROS contents at diverse exposure concentrations were all notably greater than those in control in all three diverse natural soils. The results showed a significant dose-response relationship. However, no notable 145 discrepancy was found between 1.0 and 2.5 mg/kg treatments in red clay. On day 28, the ROS contents at diverse 146 147 exposure concentrations were all notably greater than those in control in all three diverse natural soils. The results 148 showed a significant dose-response relationship. No notable discrepancy was found between 0.1 and 1.0 mg/kg 149 treatments in fluvo-aquic soils. 150 Previously we studied the subchronic effect (at 0.1, 1.0, 2.5 mg/kg) of fluoxastrobin on Eisenia fetida in artificial soil (a mixture of kaolin, quartz sand, and peat as per OECD) (OECD 222, 2004, OECD 207, 1984, Zhang et al., 2018d). 151 152 Similar results were obtained (i.e. values greater than unexposed *Eisenia fetida* and dose-response), however ROS 153 content in artificial soil (813.8-1103 fluo-intensity/mg Pr) was lower compared to values determined in natural soils. 154 Our previous study (Zhang et al., 2017) stated ROS can cause oxidative damage including LPO and DNA damage, 155 which were also evaluated in the present study. 156 157 Activities of the antioxidant enzyme (SOD and CAT) 158 The activities of enzymes can be adopted to evaluate environmental pollution (Song et al., 2009; Zhang et al., 2014). 159 ROS can be inactivated by antioxidant enzymes (SOD and CAT) (Guo et al., 2016; Hu et al., 2016; Nel et al., 2006),

2018d). Figure 1 illustrates ROS content in *Eisenia fetida* exposed to fluoxastrobin in three natural soils at three low

137

160 which are the first line of defense for cellular protection (Liu et al., 2018; Yan et al., 2015). SOD is responsible for the

161 dismutation of O_2^- to H_2O_2 , which is detoxified by CAT (Zhang et al., 2018b). Figures 2, 3 illustrate SOD and CAT

162 activities in *Eisenia fetida* exposed to fluoxastrobin in three natural soils, respectively.

163

<Figs. 2, 3>

165	On day 7, SOD activities following exposure to fluoxastrobin at all concentrations were notably lower than those
166	measured in control soils with the exception of that in the black soil at the lowest exposure dose (0.1 mg/kg). No
167	notable discrepancy was observed between 1.0 and 2.5 mg/kg treatments in all three natural soils. On day 14, the SOD
168	activities showed a notable decline from the control to exposure groups in all three diverse natural soils except for those
169	in 0.1 mg/kg treatments of black soils. No notable discrepancy was found between 0.1 and 1.0 mg/kg treatments and
170	between 1.0 and 2.5 mg/kg in all three diverse natural soils. On day 21, the SOD activities showed a notable decline
171	from the control to exposure groups except for those in 0.1 mg/kg treatments in all three diverse natural soils. No
172	notable discrepancy was found between 0.1 and 1.0 mg/kg treatments in red clay. On day 28, the SOD activities showed
173	a notable decline from the control to exposure groups at the doses of 1.0 and 2.5 mg/kg in fluvo-aquic soil and red clay.
174	No notable discrepancy was found between 0.1 and 1.0 mg/kg treatments in red clay, between 1.0 and 2.5 mg/kg in all
175	three diverse natural soils, and among 0.1, 1.0, and 2.5 mg/kg treatments in black soils. The similar finding in each
176	exposure time was observed by Han et al. (2016) when they studied the effects of another strobilurin-type fungicide on
177	zebrafish at (1, 10, and 100 µg/L). We also studied the subchronic of fluoxastrobin on <i>Eisenia fetida</i> in artificial soil
178	(Zhang et al., 2018d), while the SOD activities in exposure groups were all notably greater than those in control at
179	diverse exposure time.
180	On day 7, the CAT activities showed a notable decline from the control to exposure groups at the dose 2.5 mg/kg
181	in red and black soils, while those in fluvo-aquic soils were greater than in control. No notable discrepancy was found
182	between 0.1 and 1.0 mg/kg treatments in fluvo-aquic soils and red clay. On day 14, the CAT activities showed a notable
183	decline from the control to exposure groups in red clay, while those in fluvo-aquic soils were notably greater than in
184	control. No notable discrepancy was found among the exposure groups and the controls in black soil. On day 21, the

185	CAT activities showed a notable decline from the control to exposure groups in red and black soils, while those in
196	fluine and a similar description of the second starts of the CAT activities showed a metable destine
186	fluvo-aquic soils showed a significant dose-response climb. On day 28, the CAI activities showed a notable decline
187	from the control to exposure groups in red and black soils, while those in fluvo-aquic soils were greater than in control.
188	The results showed a significant dose-response relationship in red clay. No notable discrepancy was found between 0.1
189	and 1.0 mg/kg treatments in fluvo-aquic soils and among 0.1, 1.0, and 2.5 mg/kg treatments in black soils. Another
190	important finding was that the CAT activities showed a notable decline from the control to exposure groups in artificial
191	soil (Zhang et al., 2018d), which was similar to the results in red and black soils, differed from those in fluvo-aquic soils.
192	The difference among the results of SOD and CAT activities in artificial and natural soils may state the toxicity of
193	fluoxastrobin in different soils was different. This may be due to the different soil types, including pH, TOC, and so on.
194	
195	GST activity
196	As Zhu et al. (2011) stated, GST (detoxifying enzyme) can catalyze the nucleophilic coupling of some endogenous or
197	exotic harmful substances with the mercaptol dipole of the modified glutathione, and increase its hydrophobicity so that
198	it can easily cross the cell membrane and expel it after being decomposed, so as to achieve the purpose of detoxification.
199	Figure 4 illustrated GST activities in <i>Eisenia fetida</i> exposed to fluoxastrobin in three natural soils at low exposure
200	concentrations.
201	< Fig. 4 >
202	On day 7, the GST activities at diverse exposure concentrations remain stable in control in fluvo-aquic and black
203	soils except for those of 0.1 mg/kg treatments in fluvo-aquic soils and 1.0 mg/kg in black soils, while those in red clay
204	were notably greater than in control. No notable discrepancy was found between 1.0 and 2.5 mg/kg treatments in all
205	three diverse natural soils. On day 14, the GST activities at diverse exposure concentrations remain stable in control in
206	fluvo-aquic and red clay except for those of 2.5 mg/kg treatments in fluvo-aquic soils and 1.0 mg/kg in red clay, while
207	those in black soils were notably greater than in control. No notable discrepancy was found among 0.1, 1.0, and 2.5
208	mg/kg treatments in black soils. On day 21, the GST activities at diverse exposure concentrations were all notably

209	greater than those in control in fluvo-aquic and black soils except for those of 2.5 mg/kg treatments in black soils, while
210	those in red clay were notably lower than in control. No notable discrepancy was found between 0.1 and 1.0 mg/kg
211	treatments in fluvo-aquic and black soils and between 1.0 and 2.5 mg/kg in red clay. On day 28, the GST activities
212	showed a climb from the control to exposure groups in fluvo-aquic and black soils except for those of 2.5 mg/kg
213	treatments in black soils. No notable discrepancy was found among 0.1, 1.0, and 2.5 mg/kg treatments in fluvo-aquic
214	soils, and between 0.1 and 1.0 mg/kg treatments in red clay. The results in black soils showed reached a maximum in
215	1.0 mg/kg treatments (145.9 nmol/min/mg pr) and then reduced. No notable regularity was found in GST activities in
216	all three diverse natural soils, which may be due to the complex process of the stimulation of ROS and detoxifying
217	effects. The aforementioned results showed that GST activities may increase due to stimulation of ROS and LPO (Dong
218	et al., 2009). The values of GST activities in artificial soil were higher compared to those in control not including 0.1
219	mg/kg on days 21 and 28 (Zhang et al., 2018d). Glutathione S-transferase activities reached a maximum in 1.0 mg/kg
220	treatments and then reduced at each exposure time. These results were similar to those in black soils at each exposure
221	time except for those on day 7.
222	
223	MDA contents
224	Box and Maccubbin (1997) believed ROS can cause LPO, which was evaluated using MDA contents as the biomarker.
225	Figure 5 illustrated MDA contents in <i>Eisenia fetida</i> exposed to fluoxastrobin in three natural soils.
226	< Fig. 5 >
227	
228	On day 7, the MDA contents at diverse exposure concentrations were all notably greater than those in control in
229	red clay and black soils. Furthermore, no notable discrepancy was found among 0.1, 1.0, and 2.5 mg/kg treatments and
230	the controls in fluvo-aquic soils and between 0.1 and 1.0 mg/kg in black soils. On day 14, the MDA contents at diverse
231	exposure concentrations were all notably greater than those in control in all three diverse natural soils except for those
232	in 0.1 mg/kg treatments of fluvo-aquic and black soils. On day 21, the MDA contents at diverse exposure concentrations

233	were all greater than those in control in all three diverse natural soils except for those in 0.1 mg/kg treatments of red
234	clay, and in 0.1 and 1.0 mg/kg treatments of black soils. On day 28, the MDA contents at diverse exposure
231	eray, and in our and no ingrig doutions of order sons. On any 20, and MD11 contents at all order exposure
235	concentrations were all notably greater than those in control in all three diverse natural soils except for those in 1.0 and
236	2.5 mg/kg treatments of fluvo-aquic soils and in 0.1 mg/kg treatments of black soils. No notable discrepancy was found
237	between 0.1, and 2.5 mg/kg treatments in both fluvo-aquic and red clay.
238	The excess ROS could induce LPO, and both of the pollutants and LPO could induce DNA damage and product
239	excess ROS (Evert et al., 2004, Zhang et al., 2017). We studied the fluoxastrobin' subchronic toxicity to Eisenia fetida
240	in artificial soil (Zhang et al., 2018d). The notable increase was only found in 1.0 mg/kg treatments on day 7. The MDA
241	contents were notably higher than those in control except for those in 0.1 mg/kg on day 14, which was similar to the
242	results in fluvo-aquic and black soils. The results in artificial soils reached a maximum of 1.0 mg/kg treatments and then
243	reduced on day 21, which was different from those in the present study. Notable increases were found in 1.0 and 2.5
244	mg/kg treatments on day 28. These results may state that fluoxastrobin toxicity to Eisenia fetida in artificial soil was
245	different from that in natural soils.
246	
247	DNA damage (8-OHdG contents)
248	Previous studies (Box and Maccubbin, 1997; Wood et al., 1990) indicated that ROS can cause DNA-protein
249	crosslinking and damage DNA strands including breaks and space structure changes. Deoxyguanosine, one DNA
250	nucleoside component, can be altered to 8-OHdG, which is considered a biomarker to evaluate oxidative stress and
251	DNA damage (Guo et al., 2014). Figure 6 illustrates the 8-OHdG content in Eisenia fetida exposed to fluoxastrobin in
252	the three natural soils.
253	< Fig. 6 >
254	
255	On days 7 and 14, the 8-OHdG contents at diverse exposure concentrations were all notably greater than those in
256	control in all three diverse natural soils except for those in 0.1 mg/kg treatments in all three diverse natural soils. No

257	notable discrepancy was found between 1.0 and 2.5 mg/kg treatments in black soil on day 7 and in fluvo-aquic and red
258	clay on day 14. On days 21 and 28, the 8-OHdG contents at diverse exposure concentrations were all notably greater
259	than those in control in all three diverse natural soils except for those in 0.1 mg/kg treatments of fluvo-aquic soils on
260	day 21 and in black soils on day 28. No notable discrepancy was found between 0.1 and 1.0 mg/kg treatments in both
261	fluvo-aquic and black soils and between 1.0 and 2.5 mg/kg in red clay on day 28.
262	The excess ROS could induce the production of 8-OHdG (Zhang et al., 2014). The formation of 8-OHdG indicated
263	that there was oxidative and DNA damage following exposure to fluoxastrobin in <i>Eisenia fetida</i> (Aguirre-Martinez et al.,
264	2013). Another thing stands out in the present study is that in all six environmental indicators of the present study,
265	8-OHdG content was more sensitive to fluoxastrobin.
266	
267	Differential toxicity among artificial soil and three test natural soils
268	Integrated Biomarker Response (IBR) was considered the method to evaluate the ecological and environmental
269	conditions (Samanta et al., 2018, Wang et al., 2011). The ROS content, MDA content, and SOD, CAT, GST activity of
270	2.5 mg/kg after 4-week exposure were selected to calculate the IBR index (Figure 7). The values of the fluoxastrobin
271	toxicity to Eisenia fetida in artificial soil were as per our previous study (Zhang et al., 2018d).
272	<fig. 7=""></fig.>
273	
274	In Figure 7A, the IBR values which stand for the fluoxastrobin toxicity were 3.20, 6.35, 6.58, and 4.03 in
275	artificial soil, fluvo-aquic soil, red clay, and black soil, respectively. The higher the IBR value, the higher the
276	fluoxastrobin toxicity. Thus, the fluoxastrobin subchronic toxicity to Eisenia fetida showed a climb form the artificial
277	soil to the natural soils. The subchronic toxicity was highest in red clay and lowest in black soil among the three natural
278	soils.
279	In Figure 7B, the crossover points of the orange (red, green, and blue) circle, and the coordinate axis were the end
280	point of each indicator. The length between the original point and end point in the star plot represents the standardized

281	value of each index. The black circle was a baseline (zero). The values greater than zero means indicator stimulate,
282	lower than zero means indicator inhibit. The responses of biomarkers indicated the increase of GST activity, ROS and
283	MDA contents in all the artificial and natural soils except for the decrease of GST activity in black soil. The toxic
284	effects were the decrease of SOD and CAT activity in all the artificial and natural soils except for the increase of CAT
285	activity in fluvo-aquic soil and the increase of SOD activity in artificial soil. Besides, the ROS contents in red clay were
286	similar to those in black soil, the GST activities in artificial soils were similar to those in fluvo-aquic soils, and the
287	MDA contents in artificial soils were similar to those in red clay.
288	As the IBR results stated that the subchronic toxic effects of fluoxastrobin to <i>Eisenia fetida</i> in natural soils were
289	different from those in artificial soil. Specifically, the fluoxastrobin subchronic toxicity was highest in red clay and
290	lowest in black soil among the three natural soils. Thus, we considered the toxicology test of fluoxastrobin in artificial
291	soils could not exactly evaluate that in a real environment. The previous study argued that the toxicity of three test
292	pesticides in the field was higher than that in the laboratory (Schnug et al., 2014).
293	Furthermore, the toxic manifestation of fluoxastrobin existed differences in three test natural soils. This important
294	finding stated that the terrestrial toxicity of the test pollutant may be affected by physicochemical properties (Amorim et
295	al., 2005, Stepnowski et al., 2007).
296	Taken together, we evaluated the biochemical responses of Eisenia fetida exposed to fluoxastrobin in natural soils
297	with outcomes significantly different from toxicity observation in artificial soils. Though, fluoxastrobin also induced
298	oxidative and DNA damage in Eisenia fetida in natural soils at different levels, as the IBR results stated that the
299	fluoxastrobin subchronic toxicity was highest in red clay and lowest in artificial soils. Here come questions? Which one
300	or more physicochemical properties of natural soils affect the toxicity of fluoxastrobin? What is the toxicity of

301 fluoxastrobin to soil organisms in the other natural soils? Are the regularities similar to other pesticides or even other

302 environmental pollutants? All these questions may be arbitrated in future studies.

Declarations of interest: None 304

305

Acknowledgements 306

- 307 Funding: This work was supported by the National Key R&D Program of China [grant number 2016YFD0800202]; the
- 308 National Natural Science Foundation of China [grant numbers 41771282, 41701279]; the Natural Science Foundation
- 309 of Shandong Province, China [grant numbers ZR2017MD005, ZR2017BB075]; the China Scholarship Council program;
- 310 and the Special Funds of Taishan Scholar of Shandong Province, China.

311

312 **References**

Journal Pre-proof

- 313 Aguirre-Martinez, G.V., Del Valls, T.A., Martin-Diaz, M.L., 2013. Identification of biomarkers responsive to chronic
- 314 exposure to pharmaceuticals in target tissues of *Carcinus maenas*. Marine Environment Research 7, 1–11.
- 315 Amorim, M.J.B., Römbke, J., Scheffczyk, A., Soares, A.M.V.M., 2005. Effect of different soil types on the
- 316 enchytraeids enchytraeus albidus, and enchytraeus luxuriosus, using the herbicide phenmedipham. Chemosphere
- 317 61, 1102–1114.
- Box, H.C., Maccubbin, A.E., 1997. Lipid peroxidation and DNA damage. Nutrition 3, 920–921.
- 319 Bradford, M.M., 1976. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the
- 320 principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
- 321 Brendler-Schwaab, S., Hartmann, A., Pfuhler, S., Speit, G., 2005. The *in vivo* comet assay: use and status in
- 322 genotoxicity testing. Mutagenesis 20, 245–254.
- Dong, X.L., Zhu, L.S., Wang, J.H., Wang, J., Xie, H., Hou, X.X., Jia, W.T., 2009. Effects of atrazine on cytochrome
 P450 enzymes of zebrafish (*Danio rerio*). Chemosphere 77, 404–412.
- 325 Evert, B., Salmon, T., Song, B., Jingjing, L., Siede, W., Doetsch, P.W., 2004. Spontaneous DNA damage in
- Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. Journal of Biological Chemistry 279,
 22585–22594.
- 328 Gestel, C.A.M.V., Ortiz, M.D., Borgman, E., Verweij, R.A., 2011. The bioaccumulation of molybdenum in the
- 329 earthworm *Eisenia andrei*: influence of soil properties and ageing. Chemosphere 82, 1614–1619.
- 330 Guo, Y., Weck, J., Sundaram, R., Goldstone, A.E., Buck, L.G., Kannan, K., 2014. Urinary concentrations of phthalates
- in couples planning pregnancy and its association with 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative
- 332 stress: longitudinal investigation of fertility and the environment study. Environmental Science and Technology 48,
- *9804–9811.* 333
- Guo, Y.Y., Liu, T., Zhang, J., Wang, J.H., Wang, J., Zhu, L.S., Yang, J.H., 2016. Biochemical and genetic toxicity of
- the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (*Eisenia fetida*). Environmental Toxicology

336

and Chemistry 35, 411-418.

- 337 Han, Y.N., Liu, T., Wang, J.H., Wang, J., Zhang, C., Zhu, L.S., 2016. Genotoxicity and oxidative stress induced by the
- fungicide azoxystrobin in zebrafish (*Danio rerio*) livers. Pesticide Biochemistry and Physiology 133, 13–19.
- Hu, S.Q., Zhang, W., Li, J., Lin, K.F., Ji, R., 2016. Antioxidant and gene expression responses of *Eisenia fetida*
- following repeated exposure to BDE209 and Pb in a soil-earthworm system. Science of the Total Environment 556,
- 341 163–168.
- 342 Klára V., Jakub, H., 2012. A comparison of pops bioaccumulation in *Eisenia fetida*, in natural and artificial soils and the
- 343 effects of aging. Environmental Pollution 160, 49–56.
- Kohlschmid, E., Ruf, D., 2016. Is the risk for soil arthropods covered by new data requirements under the eu ppp
- regulation no. 1107/2009? Environmental Science and Pollution Research 23, 1–8.
- Liu, T., Chen, D., Li, Y.Q., Wang, X.G., Wang, F.L., 2018. Enantioselective bioaccumulation and toxicity of the
- neonicotinoid insecticide dinotefuran in earthworms (*Eisenia fetida*). Journal of Agricultural and Food Chemistry
 66, 4531–4540.
- Nel, A, Xia, T., Madler, L., Li, N., 2006. Toxic potential of materials at the nanolevel. Science 311, 622–627.
- 350 OECD, 1984. Test No 207: Earthworm Acute Toxicity Tests. Organisation for Economic Co-operation and
- 351 Development, Paris.
- 352 OECD, 2004. Test No. 222: Earthworm Reproduction Test (*Eisenia fetida/andrei*). Organisation for Economic
- 353 Co-operation and Development, Paris.
- 354 Samanta, P., Im, H., Na, J., Jung, J., 2018. Ecological risk assessment of a contaminated stream using multi-level
- integrated biomarker response in, *Carassius auratus*. Environmental Pollution 233, 429–438.
- 356 Sanchez, W., Burgeot, T., Porcher, J., 2013. A novel "integrated biomarker response" calculation based on reference
- deviation concept. Environmental Science and Pollution Research 20, 2721–2725.
- 358 Sanchez-Hernandez, J.C., Ríos, J.M., Attademo, A.M., Malcevschi, A., Andrade Cares, X., 2019. Assessing biochar
- impact on earthworms: implications for soil quality promotion. Journal of Hazardous materials 366, 582–591.

- 360 Schnug, L., Jensen, J., Scott-Fordsmand, J.J., Leinaas, H.P., 2014. Toxicity of three biocides to springtails and
- 361 earthworms in a soil multi-species (SMS) test system. Soil Biology and Biochemistry 74, 115–126.
- 362 Song, Y., Zhu, L.S., Wang, J., Wang, J.H., Liu, W., Xie, H., 2009. DNA damage and effects on antioxidative enzymes in

363 earthworm (*Eisenia foetida*) induced by atrazine. Soil Biology and Biochemistry 41, 905–909.

- 364 Stepnowski, P., Mrozik, W., Nichthauser, J., 2007. Adsorption of alkylimidazolium and alkylpyridinium ionic liquids
- 365 onto natural soils. Environmental Science and Technology 41, 511–516.
- 366 Wang, C., Lu, G., Peifang, W., Wu, H., Liang, Y., 2011. Assessment of Environmental Pollution of taihu lake by
- 367 combining active biomonitoring and integrated biomarker response. Environmental Science and Technology 45,
 368 3746–3752.
- 369 Wang, Y.H., Chen, C., Qian, Y.Z., Zhao, X.P., Wang, Q., 2015. Ternary toxicological interactions of insecticides,
- herbicides, and a heavy metal on the earthworm *Eisenia fetida*. Journal of Hazardous materials 284, 233–240.
- 371 Wood, M.L., Dizdaroglu, M., Gajewski, E., Essigmann, J.M., 1990. Mechanistic studies of ionizing radiation and
- 372 oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a
- 373 unique site in a viral genome. Biochemistry 29, 7024–7032.
- 374 Yan, S.H., Wang, J.H., Zhu, L.S., Chen, A.M., Wang, J., 2015. Thiamethoxam induces oxidative stress and antioxidant
- 375 response in zebrafish (*Danio rerio*) livers. Environmental Toxicology 31, 1–10.
- 376 Zhang, C., Du, Z.K., Li, B., Sun, X., Wang, J., Wang, J.H., Zhu, L.S., 2018a. Evaluating toxicity of
- 377 1-octyl-3-methylimidazolium hexafluorophosphate to microorganisms in soil. Chemosphere 210, 762–768.
- Zhang, C., Wang, J., Zhang, S., Zhu, L.S., Du, Z.K., Wang, J.H., 2017. Acute and subchronic toxicity of pyraclostrobin
 in zebrafish (*Danio rerio*). Chemosphere 188, 510–516.
- Zhang, C., Wang, J.H., Dong, M., Wang, J., Du, Z.K., Li, B., Zhu, L.S., 2018b. Effect of 1-methyl-3-hexylimidazolium
- 381 bromide on zebrafish (*Danio rerio*). Chemosphere 192, 348–353.
- 382 Zhang, C., Zhou, T.T., Wang, J., Zhang, S., Zhu, L.S., Du, Z.K., Wang, J.H., 2018c. Acute and chronic toxic effects of
- 383 fluoxastrobin on zebrafish (*Danio rerio*). Science of the Total Environment 610-611, 769–775.

- Zhang, C., Zhou, T.T., Zhu, L.S., Du, Z.K., Li, B., Wang, J., Wang, J.H., Sun, Y.A., 2019. Using enzyme activities and 384
- 385 soil microbial diversity to understand the effects of fluoxastrobin on microorganisms in fluvo-aquic soil. Science of the Total Environment 666, 89-93. 386
- Zhang, C., Zhu, L.S., Wang, J., Wang, J.H., Du, Z.K., Li, B., Zhou, T.T., Cheng, C., Wang, Z.B., 2018d. Evaluating 387
- 388 subchronic toxicity of fluoxastrobin using earthworms (Eisenia fetida). Science of the Total Environment 642,
- 389 567-573.
- Zhang, L.J., Ji, F.N., Li, M., Cui, Y.B., Wu, B., 2014. Short-term effects of dechlorane plus on the earthworm Eisenia 390
- 391 fetida, determined by a systems biology approach. Journal of Hazardous materials 273, 239-246.
- 392 Zhu, L.S., Dong, X.L., Xie, H., Wang, J., Wang, J.H., Su, J., Yu, C.W., 2011. DNA damage and effects on
- 393 glutathione-S-transferase activity induced by atrazine exposure in zebrafish (Danio rerio). Environmental
- 394 Toxicology 26, 480-488.

401 **Fig. 1.** The ROS content in *Eisenia fetida* exposed to fluoxastrobin in fluvo-aquic soils, red clay, and black soils at 402 diverse concentrations. The small check in the box plot represents mean values of three replicates. The five lines from 403 top to bottom represent the maximum, means + standard error (SE), median, means – SE, and minimum. Small letter 404 represents significant difference (p < 0.05) among 0 mg/kg and other exposure groups. Pr, protein.

413 represents significant difference (p < 0.05) among 0 mg/kg and other exposure groups. Pr, protein.

422 represents significant difference (p < 0.05) among 0 mg/kg and other exposure groups. Pr, protein.

Fig. 4. GST activities in *Eisenia fetida* exposed to fluoxastrobin in fluvo-aquic soils, red clay, and black soils at diverse
concentrations. The small check in the box plot represents mean values of three replicates. The five lines from top to
bottom represent the maximum, means + standard error (SE), median, means – SE, and minimum. Small letter

431 represents significant difference (p < 0.05) among 0 mg/kg and other exposure groups. Pr, protein.

432

438 **Fig. 5.** The MDA content in *Eisenia fetida* exposed to fluoxastrobin in fluvo-aquic soils, red clay, and black soils at 439 diverse concentrations. The small check in the box plot represents mean values of three replicates. The five lines from 440 top to bottom represent the maximum, means + standard error (SE), median, means – SE, and minimum. Small letter 441 represents significant difference (p < 0.05) among 0 mg/kg and other exposure groups. Pr, protein.

Fig. 6. The 8-OHdG content in *Eisenia fetida* exposed to fluoxastrobin in fluvo-aquic soils, red clay, and black soils at diverse concentrations. The small check in the box plot represents mean values of three replicates. The five lines from top to bottom represent the maximum, means + standard error (SE), median, means – SE, and minimum. Small letter represents significant difference (p < 0.05) among 0 mg/kg and other exposure groups.

451 Fig. 7. Integrated biomarker response index (A) among all the test toxicology indicators exposed fluoxastrobin to

452 *Eisenia fetida* at 2.5 mg/kg in different soil types on day 28. The values (B) greater than zero means indicator stimulate,

453 lower than zero means indicator inhibit (Orange line: artificial soil; red line: fluvo-aquic soil; green line: red clay; blue

Jour

454 line: black soil).

Journal Pre-proo

Highlights

Effects of fluoxastrobin on earthworms in different types of soils were compared.

Subchronic toxicity of fluoxastrobin to Eisenia fetida was systematically evaluated.

Toxicity in natural soils may not represent that in artificial soil evaluated by IBR.

ournal Prevero

Conflicts of interest

The authors declare that they have no conflict of interest. All of the authors have read and approved the manuscript. This work has not been published previously, nor is it being considered by any other peer-reviewed journal.

Journal Prevention